Data Q&A

College-Success Algorithms Often Get It Wrong for Students of Color

By Sarah D. Sparks — August 02, 2024 3 min read
Colorful abstract circular, fragmented design with two Black students showing in pieces of the fragmented shapes.
  • Save to favorites
  • Print

Higher education programs increasingly use algorithms based on students’ background, academic achievement, and other factors to predict whether they will complete a degree.

These tools can help direct resources to struggling students, but they can also give a biased picture of students’ potential, according to a new study published by AERA Open, a journal of the American Educational Research Association.

The study describes yet another way that predictive tools can be prone to “algorithmic bias,” in which lacking or missing data make such tools less accurate, or even misleading, when applied to certain demographic populations.

Hadis Anahideh, an assistant professor of industrial engineering at the University of Illinois, Chicago, and her colleagues analyzed federal longitudinal data on students who were 10th graders in 2002 and later entered four-year degree programs. They used a variety of “college success” models to predict the likelihood that students would complete a bachelor’s degree within eight years of their high school graduation, and then compared those predictions to students’ actual reported educational attainment.

“It makes [admissions officers’] job easier because they don’t have to go through the data one by one,” Anahideh said. “If they use these models, which are very powerful, they can estimate, OK, if this is the performance of the new student coming in, based on their high school variable and based on their background information, will they be a successful student? Can they graduate from the program or not?”

College-success algorithms falsely predicted failure for about 1 in 5 Black and Hispanic students, the researchers found. By contrast, only 12 percent of white students and 6 percent of Asian students were tapped as likely to fail, when they actually went on to complete a bachelor’s degree. This kind of flag can be used to target interventions to struggling students, but Anahideh said they could also put students at a disadvantage in admissions and scholarships.

The models also tended to dramatically overestimate how well white and Asian students would do in college relative to other students. Seventy-three percent of Asian students and 65 percent of white students who did not earn a four-year degree in eight years had been predicted to do so. Only a third of Black students and 28 percent of Hispanic students were incorrectly tagged for success.

“There is a bias right in the system,” Anahideh said. “But the surprising thing in this study was, these common [bias]-mitigation techniques are not really effective. ... There isn’t one unique solution to address the bias.”

Prior research has found datasets used to train predictive tools often don’t include enough diverse students to teach the tools how to estimate what a successful student of color looks like in the system. But Anahideh and her colleagues found that adding in more examples of successful students from different backgrounds wasn’t enough to remove bias from the system.

That’s because certain indicators are linked, increasing the weight they have in the model. For example, average ACT and SAT scores are highly predictive of later college achievement—but they are also closely linked to race, and low exam scores can be a less accurate predictor of earning a degree for Black and Hispanic students than white students, the study found.

Educators who work with students transitioning to college can help buffer their students against the effects of algorithmic bias, she said, by “learning from this historical data and what the model estimates for these students ... and try to advise them accordingly to be more successful.”

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Well-Being Webinar
Attend to the Whole Child: Non-Academic Factors within MTSS
Learn strategies for proactively identifying and addressing non-academic barriers to student success within an MTSS framework.
Content provided by Renaissance
School & District Management Webinar Getting Students Back to School and Re-engaged: What Districts Can Do 
Dive into districtwide strategies that are moving the needle on the persistent problem of chronic absenteeism and sluggish student engagement.
Student Well-Being Webinar How to Improve the Mental Wellbeing of Teachers and Their Students: Results of the Third Annual Merrimack Teacher Survey
The results of the third annual Merrimack American Teacher Survey are in! Join this webinar and get an inside look into teacher and student well-being.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Data What the Research Says What Does 'Evidence-Based' Mean? A Study Finds Wide Variation.
Fewer than 1 in 3 education interventions get consistent judgments on their evidence base from reviewers.
5 min read
photograph of a magnifying glass on an open book
Valiantsin Suprunovich/iStock
Data 'Hidden Homeless': A Key Measure of Homelessness Excludes Most Students
Federal agencies differ in how they measure homelessness—and many vulnerable students are left out.
3 min read
Photograph of a low angle view of children with backpacks climbing the school staircase.
E+/Getty
Data Spotlight Spotlight on Leveraging Data for Student Success
This Spotlight will help you learn how data can help schools target resources, explore how to improve instruction with data, and more.
Data What Superintendents Say They Need More of to Help Them Manage Districts
98% of those surveyed said better data would make them more comfortable making decisions.
2 min read
Image of a data dashboard.
Suppachok Nuthep/iStock/Getty